Optimizing designs and operations of a single network or multiple interdependent infrastructures under stochastic arc disruption
نویسنده
چکیده
In this paper, we consider an infrastructure as a network with supply, transshipment, and demand nodes. A subset of potential arcs can be constructed between node pairs for conveying service flows. The paper studies two optimization models under stochastic arc disruption. Model 1 focuses on a single network with small-scale failures, and repairs arcs for quick service restoration. Model 2 considers multiple interdependent infrastructures under large-scale disruptions, and mitigates cascading failures by selectively disconnecting failed components. We formulate both models as scenario-based stochastic mixed-integer programs, in which the first-stage problem builds arcs, and the second-stage problem optimizes recourse operations for restoring service or mitigating losses. The goal is to minimize the total cost of infrastructure design and recovery operations. We develop cutting-plane algorithms and several heuristic approaches for solving the two models. Model 1 is tested on an IEEE 118-bus system. Model 2 is tested on systems consisting of the 118-bus system, a 20-node network, and/or a 50-node network, with randomly generated interdependency sets in three different topological forms (i.e., chain, tree, and cycle). The computational results demonstrate that (i) decomposition and cutting-plane algorithms effectively solve Model 1, and (ii) heuristic approaches dramatically decrease the CPU time for Model 2, but yield worse bounds when cardinalities of interdependency sets increase. Future research includes developing special algorithms for optimizing Model 2 for complex multiple infrastructures with special topological forms of system interdependency.
منابع مشابه
Optimizing Investment for Recovery in Interdependent Infrastructures
Reliable operation of complicated interdependent infrastructures, (including transportation, electric power, oil, gas, telecommunications and emergency services) is vital to developed economies. This paper develops a method to estimate the “time to recover” from a disruption in such interdependent infrastructures. It also develops a mathematical model and solution procedure to optimize investme...
متن کاملAn integrated model for designing a distribution network of products under facility and transportation link disruptions
Due to occurrence of unexpected disruptions,a resilient supply chain design is important. In this paper, a bi-objective model is proposed for designing a resilient supply chain including suppliers, distribution centers (DCs), and retailers under disruption risks.The first objective function minimizes total costs. The second objective function maximizes satisfied demands. We use the augmented e-...
متن کاملVendor Managed Inventory of a Single-vendor Multiple-retailer Single-warehouse Supply Chain under Stochastic Demands
In this study, a vendor-managed inventory model is developed for a single-vendor multiple-retailer single-warehouse (SV-MR-SV) supply chain problem based on the economic order quantity in which demands are stochastic and follow a uniform probability distribution. In order to reduce holding costs and to help balanced on-hand inventory cost between the vendor and the retailers, it is assumed that...
متن کاملApplying a CVaR Measure for a Stochastic Competitive Closed-Loop Supply Chain Network under Disruption
This paper addresses a closed-loop supply chain network design problem, in which two different supply chains compete on retail prices by defining a price-dependent demand function. So, the model is formulated in a bi-level stochastic form to demonstrate the Stackelberg competition and associated uncertainties more precisely. Moreover, it is capable of considering random disruptions in the leade...
متن کاملOptimizing Diamond Structured Automobile Supply Chain Network Towards a Robust Business Continuity Management
This paper presents an optimized diamond structured automobile supply chain network towards a robust Business Continuity Management model. The model is necessitated by the nature of the automobile supply chain. Companies in tier two are centralized and numerically limited and have to supply multiple tier one companies with goods and services. The challenge with this supply chain structure is th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & OR
دوره 40 شماره
صفحات -
تاریخ انتشار 2013